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Abstract. A model of globally coupled bistable systems consisting of two kinds of sites, subject to peri-
odic driving and spatially uncorrelated stochastic force, is investigated. The extended system models the
competing process of activators and suppressers. Analytical computations for linear response of the system
to the external periodic forcing is carried out. Noise-induced Hopf bifurcation is revealed, and stochastic
resonance, sensitively depending on the frequency of the external forcing, is predicted under the Hopf
bifurcation condition. Numerical simulations agree with the analytical predictions satisfactorily.

PACS. 05.45.+j Fluctuation phenomena, random processes, and Brownian motion

1 Introduction

Usually one thinks that noise may play role to spoil sig-
nal, reduce coherence and increase disorder. However, it
is found that under proper nonlinear condition noise can
play rather positive role in improving output signal, en-
hancing coherence. In other words, increasing noise (in-
creasing disorder) in the input may result in increasing
order in the output. This seemly striking feature of non-
linear stochastic systems is termed as stochastic resonance
(SR). The topic of SR has attracted much attention for
nearly two decades [1–8], for the latest review, see refer-
ence [9]. The investigation has focused on the “resonance”
with respect to noise intensity. Recently, there has been
a great interest to extend the SR study to coupled sys-
tems [10–20]. In reference [19], the authors suggested a
model of globally coupled overdamped nonlinear oscilla-
tors with two kinds of competing cells. The most interest-
ing feature of this model is that, on one hand, a resonance
purely noise induced (i.e., can be called stochastic reso-
nance) can be found, on the other hand, this resonance
has sensitive frequency dependence (i.e., the meaning of
conventional resonance in physics is recovered). This SR
feature is identified at a noise-induced Hopf bifurcation
point. Thus, the scope of the investigation of SR can be
considerably enlarged. This paper is essentially developed
from reference [19]. First, analytical predictions are car-
ried out, based on the linear response theory. Second, nu-
merical simulations for the original coupled systems fully
confirm analytical predictions. The model investigated in
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this paper reads

.
xi= a1xi − b1x

3
i + µ1Z(t) +A1 cos(Ωt+ γ1) + Γi(t)

.
yi= a2xi − b2y

3
i + µ2Z(t) +A2 cos(Ωt+ γ2) +∆i(t)

〈Γi (t)〉 = 0, 〈Γi (t)Γj(t
′)〉 = 2D1δijδ(t− t

′)

〈∆i (t)〉 = 0, 〈∆i (t)∆i(t
′)〉 = 2D2δijδ(t− t

′),

〈Γi(t)∆j(t)〉 = 0 (1.1)

where all parameters a1,2, b1,2 and µ1,2 are positive, and

Z(t) = X(t)− Y (t), X(t) =
1

N

k=N∑
k=1

xk,

Y (t) =
1

N

k=N∑
k=1

yk. (1.2)

The system consists of two kinds of space cells xi,
i = 1, 2, · · ·, N , and yj , j = 1, 2, · · ·, N . The inner dynam-
ics of each cell is governed by a bistable system forced
by a periodic injection and a white noise driving. All
cells are coupled to each other through the mean field

Z(t) = 1
N

i=N∑
i=1

xi −
j=N∑
j=1

yj

 where x cells are regarded
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active while y cells are suppressive. The idea of competi-
tion between activators and suppressers appears in many
fields, and this idea is crucial in our case for the new fea-
ture of SR with sensitive frequency dependence.

2 Analytical prediction of SR with sensitive
frequency dependence

For treating equations (1.1) we can start with analyzing
the dynamics of single cell

.
x= ax− bx3 +A cos(Ωt) + Γ (t) (2.1)

which can be transformed to a Fokker-Planck equation
(FPE)

∂P (x, t)

∂t
= −

∂

∂x

[
ax−bx3+A cos(Ωt)

]
P (x, t)

+D
∂2

∂x2
P (x, t). (2.2)

At small forcing A� 1, the asymptotic solution 〈x(t)〉 of
is known to be [6]

〈x(t)〉 = Re {B exp [i(Ωt+ φ)]}

= Re {AM exp[i(Ωt+ θ)]} (2.3)

M exp(iθ) =
n=∞∑
n=1

gn exp(iα)

gn =
1

(λ2
n +Ω2)

1
2

〈n | x | 0〉

〈
n

∣∣∣∣ ∂∂x
∣∣∣∣ 0〉 (2.4)

cos(αn) = λn/
(
λ2
n+Ω2

) 1
2, sin(αn)=−Ω/

(
λ2
n+Ω2

) 1
2

where |n〉 and 〈n| are the nth right and left eigenvectors
of the FP operator (2.2) with A = 0, respectively, and the
corresponding eigenvalues reads −λn, which are ordered
as 0 = λ0 < λ1 < λ2 < · · ·

In equations (1.1) all the cells are coupled to each other
via the same quantity Z(t). In the asymptotic state, the
motions of all xi and yi are characteristically identical for
different i. Therefore, the 2N coupled Langevin equations
can be transformed to two coupled Fokker-Planck equa-
tions

∂P (x, t, Z(t))

∂t
= −

∂

∂x

[
a1x− b1x

3 + µ1Z(t)

+A1 cos(Ωt+ γ1) +D1
∂

∂x

]
P (x, t, Z(t))

∂P (y, t, Z(t))

∂t
= −

∂

∂y

[
a2y − b2y

3 + µ2Z(t)

+A2 cos(Ωt+ γ2) +D2
∂

∂y

]
P (y, t, Z(t))

(2.5)

where x and y represent the variables xi and yi, respec-
tively. Now the remaining point of (2.5) is to close the

equations by determining the coupling quantity Z(t) (i.e.,
X(t) and Y (t)). For doing this we use self-consistent con-
ditions

〈x(t)〉 = X(t), 〈y(t)〉 = Y (t) (2.6)

where 〈x(t)〉 and 〈y(t)〉 are the statistical averages of
x and y from (2.5) 〈x(t)〉 =

∫
xP (x, t)dx, 〈y(t)〉 =∫

yP (y, t)dy, while x(t) and y(t) are the space averages

of xi and yi as X(t) = 1
N

i=N∑
i=1

xi(t) and Y (t) =

1
N

i=N∑
i=1

yi(t). The identities of (2.6) are valid in the large

system size limit due to the symmetry between different
cells in the asymptotic state and the Large Number The-
ory. It is emphasized as N → ∞ the quantities X(t) and
Y (t) (also Z(t)) are no longer stochastic, their fluctua-
tions are canceled by the spatial averages over the infinite
number of cells.

With equations (2.5, 2.6) we can compute X(t) and
Y (t), based on the solution (2.3, 2.4). With small forcing
(A� 1) we can separate both X(t) and Y (t) to two parts

X(t) = X0 +Xt, Y (t) = Y0 + Yt

where X0 and Y0 are the solutions of equations (2.5) at
A1,2 = 0, which are set to zero, X0 = Y0 = 0, in our
discussion. Xt and Yt are assumed to be

Xt = B1 cos(Ωt+ φ1), Yt = B2 cos(Ωt+ φ2)

with B1, B2 and φ1, φ2 to be determined. Inserting Xt

and Yt into equations (2.5), and considering the solution
of (2.3) we can self-consistently arrive at two coupled al-
gebraic equations

B1 exp(iφ1) = µ1M1 exp (iθ1) [B1 exp(iφ1)−B2 exp(iφ2)]

+A1M1 exp [i (θ1 + γ1)]

B2 exp(iφ2) = µ1M2 exp (iθ2) [B1 exp(iφ1)−B2 exp(iφ2)]

+A2M2 exp [i (θ2 + γ2)] (2.7)

where the quantities M1,2 and θ1,2 are given in equations
(2.4) by setting Z = 0 in equations (2.5). Equations (2.7)
have solutions

B1,2 exp(iφ1,2) =
Q1,2

Q0
,

Q0 = 1− µ1M1 exp(iθ1) + µ2M2 exp(iθ2)

Q1,2 = A1,2M1,2 exp [i (γ1,2 + θ1,2)]

±M1M2 exp [i (θ1 + θ2)] [A1,2µ2,1 exp(iγ1,2)

−A2,1µ1,2 exp (iγ2,1)] . (2.8)

An obvious conclusion from (2.8) is that the coherent out-
put (B1,2) can be greatly enhanced at the vanishing Q0.
The resonance condition is determined by Q0 = 0 as

µ1M1 cos(θ1) = µ2M2 cos(θ2) + 1,

µ1M1 sin(θ1) = µ2M2 sin(θ2). (2.9)
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It is striking that the stochastic resonance condition and
the linear response solution of 2N coupled Langevin equa-
tions can be exactly computed by two enormously simpli-
fied coupled algebraic equations in the large system size
limit, the coefficients of the two algebraic equations can
be given by analyzing a one-dimensional FPE. It is em-
phasized that the solutions (2.8) are valid for arbitrary
Di, µi, and Ω. The only restriction is A � Di and 1.
For A � D1,2 � 1, we can keep only the first term in
(2.4), M = g1, and θ = α1, and obtain

M1,2 =
a1,2λ (1, 2)

b1,2D1,2

√
λ (1, 2)

2
+Ω2

cos (θ1,2) =
λ (1, 2)√

λ (1, 2)2 +Ω2

,

sin (θ1,2) =
−Ω√

λ (1, 2)
2

+Ω2

(2.10)

where λ (1, 2) are the first nonzero eigenvalues computed
from the first and second FPEs of (2.5), respectively.

λ (1, 2) =

√
2a1,2

πb1,2
exp

(
−

a2
1,2

4b1,2D1,2

)
. (2.11)

Afterwards we simply denote λ (1, 2)by λ1,2, respectively.
Inserting (2.10) to (2.9) we can explicitly present the SR
conditions as

λ1+λ2 =
a1µ1λ1

b1D1
−
a2µ2λ2

b2D2
(2.12)

Ω2 =

(λ1−λ2)

(
a1µ1

b1
λ1+

a2µ2

b2
λ2

)
−
(
D1λ

2
1+D2λ

2
2

)
D1+D2

·

(2.13)

In the case of

a1µ1

b1
=
a2µ2

b2
= µ, D1 = D2 = D (2.14)

we get rather compact SR conditions as

µh =
D (λ1 + λ2)

λ1 − λ2
(2.15a)

Ω2 = λ1λ2. (2.15b)

A physically meaningful conclusion is that SR occurs at
the frequency of geometrical mean of the decay rates of
the two bistable systems. In Figures 1 we plot the SR
conditions of equations (2.15) in D − µ plane and D −Ω
plane at a2 = b1,2 = 1 and a1 = 0.9 (these parameters are
used afterwards).

A striking feature of (2.8) is that there exists a diver-
gence in the linear response at the SR condition; this is
essentially distinguished from the SR for single bistable
systems where no divergence can be associated with the

Fig. 1. a1 = 0.9, a2 = b1 = b2 = 1, A1 = A2 = A, D1 = D2 =
D, a1µ1 = µ2 = µ (these parameter values and relations are
used in all the following figures). A = 0. (a) µh vs. D according
to equation (2.15a). (b) Ω vs. D according to equation (2.15b).

stochastic resonance. Similar divergence feature is also
found in reference [10]. Divergence of linear response is
believed to be related to phase transition phenomena
[10,13]. Phase transitions are found indeed in refer-
ence [10] and in our cases. In the former it is spontaneous
ordering phase transition, pitchfork bifurcation, while in
the latter case it is spontaneous oscillation phase transi-
tion, Hopf bifurcation. We would like to emphasize that in
both cases the phase transitions are purely noise-induced.
Therefore, a sharp peak of output signal (resonance) can
appear at an optimal noise intensity when we vary the in-
put noise; that is what one refers commonly to stochastic
resonance. If we plot the amplitude of the output signal
vs. the frequency of the input signal, in reference [10] one
find the peak at Ω = 0; this feature is observed so far in
all previous works on SR problem. In our case the peak
can appear at nonzero Ω, namely, a SR with sensitive fre-
quency dependence is justified. The reason for the differ-
ence between the system of reference [10] and the present
system is that in the former case the spontaneous ordering
bifurcation is associated to frequency Ω = 0 while at the
noise-induced Hopf bifurcation in the latter case a nonzero
inner frequency appears, which can be resonant with an
external force with the equal frequency. It is interesting to
notice that the SR with frequency sensitivity in our system
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is due to the competition between the activators and sup-
pressers, which is represented by the negative signs in the
r.h.s. of equations (2.7) before the termsB2 exp (iφ2). If we
cancel the competition by changing these “-” signs to “+”
(i.e., use Z(t) = X(t)+Y (t) instead of Z(t) = X(t)−Y (t)
in Eqs. (1.1)), the noise-induced Hopf bifurcation and the
associated SR with sensitive frequency dependence can
definitely disappear.

In the next section we will perform numerical simula-
tions on the original equations (1.1), and verify the the-
oretically predicted SR conditions (2.15), and reveal the
existence of SR with sensitive frequency dependence.

3 Numerical results

For understanding the basic dynamics of the unforced sys-
tem, we run equations (1.1) by setting A1 = A2 = 0, and
present the results in Figures 2. Figures 2a, b and c plot
the data for N = 400 after transient process. For µ < µh
(µh ≈ 0.2 for D = 0.06, see Fig. 1a) , we find a small spot
around the origin in (a), which represents the stable sta-
tionary solution at X(t) = Y (t) = 0 (that verifies the as-
sumption X0 = Y0 = 0 in the previous section). The finite
spot area is due to the fluctuation caused by finite system
size, the width of this area can be roughly estimated by

applying the Large Number Theory ∆Sw ∝
2
√

3
√
N
≈ 0.18.

For µ = µh, we find a typical feature of critical fluctu-
ation amplification of Hopf bifurcation. At the Hopf bi-
furcation, the fluctuation can be also roughly estimated

as Sc ∝
2
√

3
4
√
N
≈ 0.8. Both Sw and Sc, theoretically esti-

mated, qualitatively agree with the numerical observations
in Figure 2a and b. In Figure 2c we take µ > µh, a limit
cycle solution is observed. All these observations of equa-
tions (1.1) are fully consistent with the phase diagram of
Figure 1a.

In Figures 3, 4 and 5, we plot the quantity β =
B1

A1
against various control parameters. β represents the signal
amplification, and B1 is numerically computed as

B1 =
1

T

√√√√[∫ T

0

X(t) cos(Ωt)dt

]2

+

[∫ T

0

X(t) sin(Ωt)dt

]2

(3.1)

where we take T �
2π

Ω
(T = 50 in our simulations). Each

black disk represents a date obtained by averaging 50 runs
of equations (1.1).

In Figure 3 we take µ = 0.2, Ω = 0.012, and plot
β versus D for various A (A1 = A2 = A is taken in all
Figs. 3, 4 and 5). A stochastic resonance in conventional
sense is identified. There exists an optimal noise intensity,
at which the output takes maximum. The SR parameters
µ = 0.2, Ω = 0.012 and D ≈ 0.06 are identical to what
are predicted in Figures 1a and b.

In Figure 4, we fix D = 0.06, Ω = 0.012 and plot β
vs. µ for different A, we also find peaked response curves.

Fig. 2. A = 0, D = 0.06, N = 400. (a), (b) and (c): Asymp-
totic states obtained by numerically running equations (1.1)
for different µ. (a) µ = 0.05 < µh. (b) µ = 0.2 ≈ µh. A critical
fluctuation amplification at the Hopf bifurcation point is ob-
served. (c) µ = 0.45 > µh. A limit cycle solution appears after
Hopf bifurcation.

These peaks are well known for periodically forced coupled
Brownian motions (see Ref. [10]).

The most interesting numerical results in this paper
are presented in Figures 5 where β is plotted vs. Ω for
µ = 0.2, D = 0.06 and various A. We find nice SR curves
peaked at finite frequency; that is different from the con-
ventional SR behavior (where the peak is always located
at Ω = 0), but is in agreement with the conventional
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Fig. 3. N = 400, µ = 0.2, Ω = 0.012. β vs. D for differ-
ent A. SR in conventional sense is observed. Disked curves
are plotted by averaging data of 50 runs of equations (1.1)
(the same meanings are kept in Figs. 4 and 5). (a) A = 0.01.
(b) A = 0.02. (c) A = 0.04.

resonance behavior in physics. The reason for this sensitive
frequency dependence of the SR responses can be easily
understood from the unperturbed system (A1 = A2 = 0
in Eqs. (1.1)), where an inner oscillation with finite fre-
quency appears via Hopf bifurcation; and at the bifurca-
tion point a periodic input with the resonant frequency
can be most effectively amplified. Two important points
should be emphasized for this effect. First, this oscilla-
tion is purely noise induced (without noise, the coupled
bistable systems of (1.1) have no any oscillations for such

Fig. 4. N = 400, D = 0.06, Ω = 0.012. β vs. µ for different
A. (a) A = 0.01. (b) A = 0.02. (c) A = 0.04.

small µ), then the resonance is truly a stochastic reso-
nance. Second, the resonance appears between the inner
frequency and the external frequency, then this is truly a
resonance in physically conventional sense; that essentially
differs from the SR we know so far.

In both Figures 4 and 5 the parameters for resonance
agree qualitatively with those theoretically predicted in
Figure 1. Nevertheless, some quantitative deviations can
be observed. The reason for these dismatches can be
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Fig. 5. N = 400, µ = 0.2, D = 0.06. β vs. Ω for different A.
SR with sensitive frequency dependence, a resonance in physi-
cally conventional sense (but not in conventional SR sense), is
observed. (a) A = 0.01. (b) A = 0.02. (c)A = 0.04.

explained by finiteness of the quantities N, D, µ and A
since the formulas (2.15) turn to be exact only in the limits
N →∞, A→ 0, D → 0, µ→ 0 and A� D.

4 Conclusion

In conclusion we would like to make a few remarks. We
have suggested a model of globally coupled overdamped
oscillators, each site subjects to a spatially coherent and

time periodic forcing and a spatially uncorrelated noise
driving. All the sites are divided to two groups, one activa-
tors, and the other suppressers. The competition between
these two kinds of sites is the key point for the essentially
new results in this paper.

Without the periodic forcing, this model allows noise-
induced oscillation with a finite characteristic frequency
through Hopf bifurcation. Then with the periodic forcing
one can find, at the Hopf bifurcation point, a resonance
between the frequency of external force and that of the
inner noise-induced oscillation; this leads to a SR with
sensitive frequency dependence.

A well known self-consistent field approach is applied
for analytically treating the high-dimensional globally
coupled systems. According to the linear response theory,
the SR condition of this 2N -dimensional Langevin equa-
tions can be determined exactly, in the large system size
limit, by two coupled algebraic equations with coefficients
given from the analysis of a simple one-dimensional Brow-
nian motion. The analytical predictions from these enor-
mously simplified equations are satisfactorily confirmed by
numerical simulations.

This work is supported by the Foundation of National Nature
Science of China and the Project of Nonlinear Science.
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